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On Quantum Master Equation and its application to driven
dissipative two-level systems.

Pritish Karmakar *a

aIndian Institute of Science Education & Research Kolkata ,
West Bengal, India 741246,

Abstract

This report begins with discussing the evolution of open quantum systems and corresponding Quantum
Master Equation (QME). The main emphasis is given to the Fluctuation Regulated Quantum Master Equation
(FRQME) and its applications on the dynamics of driven dissipative two-level systems (TLS) and quantum
optimal control of that TLS. I have also presented the results of numerical simulations for the solutions of the
FRQME in the report.
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1 Introduction
Open quantum system deals with the system which interacts with the environment or thermal reservoir,

unlike the closed system which is completely isolated from the environmental interactions. A typical open

*Email: pritishkarmakar7@gmail.com, pk21ms179@iiserkol.ac.in
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quantum system is modeled by the Hamiltonian

H = H◦
S ⊗ 1+ 1⊗H◦

R +HSR

where H◦
S , H◦

R are the static Hamiltonian of system and reservoir respectively and HSR is Hamiltonian corre-
sponding to the interaction between system and reservoir (see figure 1). From the quantum mechanics we know

Environment
H◦

R

System
H◦

SInteraction
HSR

Figure 1: Schematic diagram of typical open quantum system.

that a closed system is evolved under unitary transformation, but in case of open system, if we look particularly
the evolution of the subsystem of the total open system, it in general, is not dictated by unitary evolution. In
the later section we will discuss the Quantum Master Equation, which describe the evolution of the system.

2 Theory on Quantum Master Equation (QME).
We will start with the microscopic derivation of Quantum master equation and briefly discuss about the

Fluctuation regulated quantum master equation. We will not discuss the operator sum representation of quan-
tum master equation here. Readers are requested to refer [3] or for a brief and concise discussion refer the
previous term project report here.

2.1 Microscopic derivation of QME
Let our open quantum system can be described by the Hamiltonian,

H = H◦
S ⊗ 1+ 1⊗H◦

R +HSR ≡ H◦
S +H◦

R +HSR (2.1)

where H◦
S , H◦

R denote the static Hamiltonian of system and bath, respectively and HSR denotes system-bath
coupling Hamiltonian. And the corresponding Von-Neumann equation is

ρ̇T (t) = −i[HT (t), ρT (t)] (2.2)

We denote density operator of total system as

ρT = ρS ⊗ ρR (2.3)

where ρS and ρR denote the density operator of system and bath, respectively. We mostly work on interaction
picture, so for a operator O in Hiesenberg picture, in interaction picture it is

Õ(t) = ei(H
◦
S+H◦

R)tOe−i(H
◦
S+H◦

R)t, (2.4)

and

ρ̃T (t) = ei(H
◦
S+H◦

R)tρT (t)e
−i(H◦

S+H◦
R)t. (2.5)
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With this, the equation of motion is

˙̃ρT (t) = −i[H̃SR(t), ρ̃T (t)] (2.6)

ρ̃T (t
′) = ρ̃T (t)− i

∫ t′

t

dt1[H̃SR(t1), ρ̃T (t1)] (2.7)

Iterating repeatedly, we get

ρ̃T (t+ δt) = ρ̃T (t)− i
∫ t+δt

t

dt1[H̃SR(t1), ρ̃T (t1)] (2.8)

ρ̃T (t+ δt) = ρ̃T (t)− i
∫ t+δt

t

dt1[H̃SR(t1), ρ̃T (t)]

−
∫ t+δt

t

dt1

∫ t1

t

dt2[H̃SR(t1), [H̃SR(t2), ρ̃T (t2)]] (2.9)

ρ̃T (t+ δt) = ρ̃T (t)− i
∫ t+δt

t

dt1[H̃SR(t1), ρ̃T (t)]

−
∫ t+δt

t

dt1

∫ t1

t

dt2[H̃SR(t1), [H̃SR(t2), ρ̃T (t)]] +O(H3
SR) (2.10)

Following [1],[2] and [3] we will take couple of approximations and steps, as follows:

a. Weak coupling approximation
In this approximation we neglect the term of O(H3

SR) due to weak coupling strength, i.e.,

ρ̃T (t+ δt) = ρ̃T (t)− i
∫ t+δt

t

dt1[H̃SR(t1), ρ̃T (t)]

−
∫ t+δt

t

dt1

∫ t1

t

dt2[H̃SR(t1), [H̃SR(t2), ρ̃T (t)]] (2.11)

ρ̃S(t+ δt) = ρ̃S(t)− i
∫ t+δt

t

dt1 TrR[H̃SR(t1), ρ̃T (t)]

−
∫ t+δt

t

dt1

∫ t1

t

dt2 TrR[H̃SR(t1), [H̃SR(t2), ρ̃T (t)]] (2.12)

b. Born-Markov approximation
Assuming the weak coupling strength, the system-bath correlation time τc is sufficiently small. We consider
ρ̃R(t) = TrS(ρ̃T (t)) does not evolve over the δt interval coarse-grained time scale, i.e.,

ρ̃R(t+ δt) = ρ̃R(t) for δt≫ τc. (2.13)

We also consider the fact that δt ≪ τs where τs is the timescale of the system. Finally the coarse-grain time
interval is as follows:

τc ≪ δt≪ τs (2.14)

Let us define correlation density operator ρ̃correl as,

ρ̃corre(t) = ρ̃T (t)− TrR(ρ̃T (t))⊗ TrS(ρ̃T (t)) = ρ̃T (t)− ρ̃S(t)⊗ ρ̃R(t) (2.15)
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Let us assume that at t = 0, HSR is just turned on. So just before t = 0, let

ρ̃T (0) = ρ̃S(0)⊗ ρ̃R(0) (2.16)
ρ̃correl(0) = 0 (2.17)

Now after δt time, keeping (2.14) and (2.13) in mind,

ρ̃T (δt) ≈ ρ̃S(δt)⊗ ρ̃R(δt) ≈ ρ̃S(0)⊗ ρ̃R(δt) (2.18)
ρ̃corre(δt) ≈ ρ̃S(0)⊗ (ρ̃R(δt)− ρ̃R(0)) ≈ 0 (2.19)

Taking slightly stronger approximation, for a finite time t = nδt,

ρ̃corre(t) = ρ̃corre(nδt) = ρ̃corre((n− 1)δt) = · · · = ρ̃corre(δt) = 0 (2.20)
ρ̃R(t) = ρ̃R(nδt) = ρ̃R(0) = ρ̃eqR (2.21)

which allow us to write the total density operator as

ρ̃T (t) = ρ̃S(t)⊗ ρ̃eqR . (2.22)

The ρ̃eqR can be taken as canonical thermal equilibrium density operator, i.e,

ρeqR =
1

Z
exp

(
−H

◦
R

kbT

)
(2.23)

ρ̃eqR = ρeqR as [H◦
R, ρ

eq
R ] = 0. (2.24)

c. Expression of coupling Hamiltonian.
We take the coupling Hamiltonian to be

HSB =
∑
j

Aj ⊗Bj (2.25)

H̃SB(t) =
∑
j

Ãj(t)⊗ B̃j(t) (2.26)

Then

ρ̃S(t+ δt) = ρ̃S(t)− i
∫ t+δt

t

dt1[Ãj(t1), ρ̃S(t)] Tr
(
B̃j(t)ρ̃

eq
R

)
−
∫ t+δt

t

dt1

∫ t1

t

dt2 TrR[H̃SR(t1), [H̃SR(t2), ρ̃T (t)]] (2.27)

We can always choose H̃SR such that ⟨Bj⟩ = Tr(Bjρ
eq
R ) = Tr

(
B̃j(t)ρ̃

eq
R

)
= 0, then

ρ̃S(t+ δt) = ρ̃S(t)−
∫ t+δt

t

dt1

∫ t1

t

dt2 TrR[H̃SR(t1), [H̃SR(t2), ρ̃T (t)]] (2.28)

δρ̃S
δt

(t) =
ρ̃S(t+ δt)− ρ̃S(t)

δt

= − 1

δt

∫ t+δt

t

dt1

∫ t1

t

dt2 TrR[H̃SR(t1), [H̃SR(t2), ρ̃T (t)]] (2.29)
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d. Change of integrand variables
Change the variables as

(t1, t2) −→ (t1, τ) where τ = t1 − t2 (2.30)∫ t+δt

t

dt1

∫ t1

t

dt2 −→
∫ δt

0

dτ

∫ t+δt

t+τ

dt1 (2.31)

Considering τ > τc has negligible contribution we can approximate the integral limit as (see Figure 2)∫ δt

0

dτ

∫ t+δt

t+τ

dt1 ≈
∫ δt

0

dτ

∫ t+δt

t

dt1 ≈
∫ ∞

0

dτ

∫ t+δt

t

dt1 (2.32)

Following that

(a)
∫ δt

0
dτ

∫ t+δt

t+τ
dt1 (b)

∫ δt

0
dτ

∫ t+δt

t
dt1 (c)

∫∞
0
dτ

∫ t+δt

t
dt1

Figure 2: Figure shows the corresponding domain of the integration. Darkest shade in between τ = 0 and
τ = τc has most significant contribution. With increase of τ , the contribution decrease rapidly.

δρ̃S
δt

(t) = −
∫ ∞

0

dτ
1

δt

∫ t+δt

t

dt1 TrR[H̃SR(t1), [H̃SR(t1 − τ), ρ̃T (t)]] (2.33)

= −
∫ ∞

0

dτ
1

δt

∫ t+δt

t

dt1

{
[Ãj(t1), Ãk(t1 − τ)ρ̃S(t)] Tr

(
B̃j(t1)B̃k(t1 − τ)ρ̃eqR

)
− [Ãj(t1), ρ̃S(t)Ãk(t1 − τ)] Tr

(
B̃k(t1 − τ)B̃j(t1)ρ̃eqR

)}
(2.34)

By cyclic property of Trace and [H◦
R, ρ

eq
R ] = 0 , one can show that

gjk(τ) = Tr
(
B̃j(t1)B̃k(t1 − τ)ρ̃eqR

)
= Tr

(
B̃j(τ)B̃k(0)ρ̃

eq
R

)
(2.35)

gkj(−τ) = Tr
(
B̃k(t1 − τ)B̃j(t1)ρ̃eqR

)
= Tr

(
B̃k(−τ)B̃j(0)ρ̃eqR

)
= Tr

(
B̃k(0)B̃j(τ)ρ̃

eq
R

)
= g∗jk(τ) (2.36)
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which leads

δρ̃S
δt

(t) = −
∫ ∞

0

dτ
1

δt

∫ t+δt

t

dt1

(
gjk(τ)[Ãj(t1), Ãk(t1 − τ)ρ̃S(t)]

+ g∗jk(τ)[Ãj(t1), ρ̃S(t)Ãk(t1 − τ)]
)
. (2.37)

This is a form of quantum master equation.

e. Spectral decomposition & Secular time approximation
We proceed by spectral decomposition of Ãj(t1) in the energy eigenbasis of the system i.e., {|n⟩} with energy
eigenvalue of |n⟩ be En = ωn and we get

Ãj(t1) =
∑
m,n

⟨m|Ãj(t1)|n⟩ |m⟩⟨n|

=
∑
m,n

e−iωnmt ⟨m|Aj |n⟩ |m⟩⟨n| , where ωnm = ωn − ωm

=
∑
m,n

e−iωnmtA
(m,n)
j |m⟩⟨n| , where A(m,n)

j = ⟨m|Aj |n⟩

=
∑
ω

e−iωt
( ∑

m,n
s.t., ωnm=ω

A
(m,n)
j |m⟩⟨n|

)
=
∑
ω

e−iωtAj(ω), where Aj(ω)
∑
m,n

s.t., ωnm=ω

A
(m,n)
j |m⟩⟨n| . (2.38)

As Aj is Hermitian, we can write

Ãj(t1) =
∑
ω

e−iωtAj(ω) =
∑
ω

eiωtA†
j(ω) (2.39)

Now putting these expressions in the expression (2.37)

δρ̃S
δt

(t) = −
∫ ∞

0

dτ
1

δt

∫ t+δt

t

dt1

(
gjk(τ)[Ãj(t1), Ãk(t1 − τ)ρ̃S(t)]− h.c.

)
= −

∑
ω,ω′

∫ ∞

0

dτ
1

δt

∫ t+δt

t

dt1

(
gjk(τ)[e

iωt1A†
j(ω), e

−iω′(t1−τ)Ak(ω
′)ρ̃S(t)]

)
+ h.c.

= −
∑
ω,ω′

∫ ∞

0

dτ gjk(τ)e
iω′τ︸ ︷︷ ︸

Γjk(ω′)

1

δt

∫ t+δt

t

dt1 e
−i(ω′−ω)t1 [A†

j(ω), Ak(ω
′)ρ̃S(t)] + h.c.

= −
∑
ω,ω′

Γjk(ω
′) [A†

j(ω), Ak(ω
′)ρ̃S(t)]

( 1

δt

∫ t+δt

t

dt1 e
−i(ω′−ω)t1

)
+ h.c. (2.40)

From the above, we see t1-dependant terms of the integrand in eq (2.37) are of the form e−i(ω
′−ω)t1 . The

local time-average of terms like e−i(ω
′−ω)t1 is

1

δt

∫ t+δt

t

dt1e
i(ω−ω′)t1 = ei(ω−ω

′)t ei(ω−ω
′)δt/2 sin((ω − ω′)δt/2)

(ω − ω′)δt/2
(2.41)

≈

{
ei(ω−ω

′)t, if |ω − ω′| δt≪ 1

0, if |ω − ω′| δt≫ 1.
(2.42)
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This is secular time approximation. We denote it as(
ei(ω−ω

′)t
)

sec
=

{
ei(ω−ω

′)t, if |ω − ω′| δt≪ 1

0, if |ω − ω′| δt≫ 1.
(2.43)

When considering of the secular approximation, we can get rid of time variable t1 and the the QME is repre-
sented as

δρ̃S
δt

(t) = −
∫ ∞

0

dτ
(
gjk(τ)[Ãj(t), Ãk(t− τ)ρ̃S(t)]sec − h.c.

)
(2.44)

= −
∑
ω,ω′

Γjk(ω
′) [A†

j(ω), Ak(ω
′)ρ̃S(t)]

(
ei(ω−ω

′)t
)

sec
+ h.c. (2.45)

If we work with single frequency ω and ω = ω′, then the above QME is nicely written as

δρ̃S
δt

(t) = −Γjk(ω) [A†
j(ω), Ak(ω)ρ̃S(t)] + Γ∗

jk(ω) [Aj(ω), ρ̃S(t)A
†
k(ω)]. (2.46)

• QME in Schrodinger picture:

The expression of QME discussed before is in interaction picture. In Schrodinger picture,

ρS(t) = e−iH
◦
StρT (t)e

iH◦
St (2.47)

Then 1

δρS(t)

δt
= −i[H◦

St, ρS(t)] + e−iH
◦
St
δρ̃S(t)

δt
eiH

◦
St

= −i[H◦
St, ρS(t)]−

∫ ∞

0

dτ
(
gjk(τ)[Aj , e

−iH◦
StAke

iH◦
StρS(t)]sec − h.c.

)
(2.48)

• QME in Liouville Space:

Let the density operator ρ̃S represented as column vector form in Liouville space be ||ρ̃S⟩⟩ (For more about
this, see Appendix A). Using the identity A.4 the QME (2.45) is written as

δ

δt
||ρ̃S⟩⟩ (t) = −

∑
ω,ω′

Γjk(ω
′)
(
ei(ω−ω

′)t
)

sec
||[A†

j(ω), Ak(ω
′)ρ̃S(t)]⟩⟩ + h.c.

= L(t) ||ρ̃S(t)⟩⟩ (2.49)

where L is called the Lindbladian, and the expression of the Lindbladian is

L(t) = −
∑
ω,ω′

{
Γjk(ω

′)
(
ei(ω−ω

′)t
)

sec

(
A†
j(ω)Ak(ω

′)⊗ 1−A†
j(ω)⊗A

T
k (ω

′)
)

− Γ∗
jk(ω

′)
(
e−i(ω−ω

′)t
)

sec

(
A†
j(ω)⊗A

∗
k(ω

′)− 1⊗ATj (ω)A∗
k(ω

′)
)}

(2.50)

For further extension and modification of the QME in the later sections, we will primarily follow the
microscopic derivation as it give more physical understanding about the system.

1 Considering δρS(t)
δt

behaves same as dρS(t)
dt

.
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2.2 QME with external drive
In a type of problems where there is external drive on the system, the Hamiltonian is

H = H◦
S ⊗ 1+ 1⊗H◦

R +HSR +HD(t)⊗ 1 ≡ H◦
S +H◦

R +HSR +HD(t) (2.51)

where HD(t) denotes Hamiltonian corresponding external drive. Let Heff(t) = HSR +HD(t), then

H = H◦
S +H◦

R +Heff(t) (2.52)

Then analogous to the eq (2.12), we have

ρ̃S(t+ δt) = ρ̃S(t)− i
∫ t+δt

t

dt1 TrR[H̃eff(t1), ρ̃T (t)]

−
∫ t+δt

t

dt1

∫ t1

t

dt2 TrR[H̃eff(t1), [H̃eff (t2), ρ̃T (t)]] (2.53)

δρ̃S
δt

(t) = − i

δt

∫ t+δt

t

dt1 TrR[H̃eff(t1), ρ̃T (t)]

− 1

δt

∫ t+δt

t

dt1

∫ t1

t

dt2 TrR[H̃eff(t1), [H̃eff(t2), ρ̃T (t)]] (2.54)

Using the fact that ⟨Bj⟩ = Tr
(
B̃j(t)ρ̃

eq
R

)
= 0 and following the similar prescription shown before, one can

show that

δρ̃S
δt

(t) = − i

δt

∫ t+δt

t

dt1[H̃D(t1), ρ̃S(t)]

−
∫ ∞

0

dτ
1

δt

∫ t+δt

t

dt1[H̃D(t1), [H̃D(t1 − τ), ρ̃s(t)]]

−
∫ ∞

0

dτ
1

δt

∫ t+δt

t

dt1 TrR[H̃SR(t1), [H̃SR(t2), ρ̃T (t)]] (2.55)

δρ̃S
δt

(t) = −i[H̃D(t), ρ̃S(t)]sec −
∫ ∞

0

dτ [H̃D(t), [H̃D(t− τ), ρ̃s(t)]]sec

−
∫ ∞

0

dτ
(
gjk(τ)[Ãj(t1), Ãk(t1 − τ)ρ̃S(t)]sec − h.c.

)
(2.56)

Now using the prescription given before, one can easily write the equation in Lindbladian form.

• A second approach:

Analogous to the (2.8),

ρ̃S(t+ δt) = ρ̃S(t)− i
∫ t+δt

t

dt1 TrR[H̃eff(t1), ρ̃T (t1)] (2.57)

= ρ̃S(t)− i
∫ t+δt

t

dt1 TrR[H̃eff(t1), U(t1, t)ρ̃T (t)U
†(t1, t)] (2.58)

where

U(t1, t) = T exp

(
−i
∫ t1

t

dt2H̃eff(t2)

)
(2.59)
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In interaction picture, we know

d

dt1
U(t1, t) = −iH̃eff(t1)U(t1, t) (2.60)

U(t1, t) = 1− i
∫ t1

t

dt2 H̃eff(t2) U(t2, t) (2.61)

= 1− i
∫ t1

t

dt2 H̃eff(t2) +O(H̃2
eff) (2.62)

and putting this expression in (2.58) we get

ρ̃S(t+ δt) = ρ̃S(t)− i
∫ t+δt

t

dt1 TrR[H̃eff(t1), ρ̃T (t)]

−
∫ t+δt

t

dt1

∫ t1

t

dt2 TrR[H̃eff(t1), H̃eff(t2)ρ̃T (t)]

−
∫ t+δt

t

dt1

∫ t1

t

dt2 TrR[H̃eff(t1), ρ̃T (t2)H̃eff(t)] +O(H̃3
eff) (2.63)

which leads to the same expression as (2.54).

2.3 Fluctuation Regulated Quantum Master Equation (FRQME)
In most practical cases environmental fluctuations present in open quantum system. Here, we will follow

the prescription given in [4]. In this problem, the total Hamiltonian is

H = H◦
S ⊗ 1+ 1⊗H◦

R +HSR +HD ⊗ 1+ 1⊗HR ≡ H◦
S +H◦

R +HSR +HD +Hst (2.64)

where Hst denotes stochastic Hamiltonian corresponding to local environmental fluctuations. We define Hst

as

Hst(t) =
∑
j

fj(t) |ϕj⟩⟨ϕj | (2.65)

where {|ϕj⟩} is the eigenbasis of H◦
R with eigen values {ϵj}, and fj(t)’s are independent, Gaussian, δ-

correlated white noises with

fj(t) = 0 (2.66)

fj(s)fk(t) = κ2 δ(s− t) δj,k (2.67)

To get the QME for this case, we follow the second approach in the previous section so that we can incorporate
the effect of the environmental fluctuation and look from the perspective of ensemble average of the dynamical
evolution. The concerned time-scale of the problem is that of (2.14). Let

V (t) = Heff(t) +Hst(t) = HSR +HD(t) +Hst(t) (2.68)

Analogous to the (2.58),

ρ̃S(t+ δt) = ρ̃S(t)− i
∫ t+δt

t

dt1 TrR[Ṽ (t1), ρ̃T (t1)] (2.69)

= ρ̃S(t)− i
∫ t+δt

t

dt1 TrR[H̃eff(t1), ρ̃T (t1)], as [H̃st, ρ̃
eq
R ] = 0 (2.70)

= ρ̃S(t)− i
∫ t+δt

t

dt1 TrR[H̃eff(t1), U(t1, t)ρ̃T (t)U
†(t1, t)] (2.71)
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where

U(t1, t) = T exp

(
−i
∫ t1

t

dt2Ṽ (t2)

)
(2.72)

⇒ d

dt1
U(t1, t) = −iṼ (t1)U(t1, t) (2.73)

⇒ U(t1, t) = 1− i
∫ t1

t

dt2 Ṽ (t2) U(t2, t) (2.74)

= 1− i
∫ t1

t

dt2 H̃st(t2) U(t2, t)− i
∫ t1

t

dt2 H̃eff(t2) U(t2, t) (2.75)

= Ust(t1, t)− i
∫ t1

t

dt2 H̃eff(t2) U(t2, t) (2.76)

where

Ust(t1, t) = T exp

(
−i
∫ t1

t

dt2H̃st(t2)

)
⇒ Ust(t1, t) = 1− i

∫ t1

t

dt2 H̃st(t2) Ust(t2, t) (2.77)

Moreover, we know timescale of the noises is far less than that of H̃eff and (t2 − t) ≤ δt≪ τs, which follows

U(t2, t) = T exp

(
−i
∫ t2

t

dt3Ṽ (t3)

)
≈ T exp

(
−i
∫ t2

t

dt3H̃st(t3)

)
= Ust(t2, t). (2.78)

Incorporating all the trickery steps we finally get

U(t1, t) = Ust(t1, t)− i
∫ t1

t

dt2 H̃eff(t2) Ust(t2, t). (2.79)

and putting it in (2.71) we get

ρ̃S(t+ δt) = ρ̃S(t)− i
∫ t+δt

t

dt1 TrR[H̃eff(t1), Ust(t1, t)ρ̃T (t)U
†
st(t1, t)]

−
∫ t+δt

t

dt1

∫ t1

t

dt2 TrR[H̃eff(t1), H̃eff(t2)Ust(t2, t)ρ̃T (t)U
†
st(t1, t)]

+

∫ t+δt

t

dt1

∫ t1

t

dt2 TrR[H̃eff(t1), Ust(t1, t)ρ̃T (t)U
†
st(t2, t)H̃eff(t2)] +O(H̃3

eff) (2.80)

But we are interested in ensemble average of the evolution of the density operator, which means

ρ̃S(t+ δt) = ρ̃S(t)− i
∫ t+δt

t

dt1 TrR[H̃eff(t1), Ust(t1, t)ρ̃T (t)U
†
st(t1, t)] (2.81)

−
∫ t+δt

t

dt1

∫ t1

t

dt2 TrR[H̃eff(t1), H̃eff(t2)Ust(t2, t)ρ̃T (t)U
†
st(t1, t)]

+

∫ t+δt

t

dt1

∫ t1

t

dt2 TrR[H̃eff(t1), Ust(t1, t)ρ̃T (t)U
†
st(t2, t)H̃eff(t2)] (2.82)

Now we need to find the ensemble average of those quantities.

Ust(t2, t)ρ̃T (t)U
†
st(t1, t) = ρ̃S(t)⊗

∑
j

e−βϵj

Z
|ϕj⟩⟨ϕj | exp

(
i

∫ t1

t2

dt3fj(t3)

)

= exp

(
−κ

2

2
(t1 − t2)

)
ρ̃T (t) using (C.13) (2.83)
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Similarly,

Ust(t1, t)ρ̃T (t)U
†
st(t2, t) = exp

(
−κ

2

2
(t1 − t2)

)
ρ̃T (t), Ust(t1, t)ρ̃T (t)U

†
st(t1, t) = ρ̃T (t) (2.84)

Finally putting this in (2.82) and identifying 2/κ2 as τc (correlation time), we obtain

ρ̃S(t+ δt) = ρ̃S(t)− i
∫ t+δt

t

dt1 TrR[H̃eff(t1), ρ̃T (t)]

−
∫ t+δt

t

dt1

∫ t1

t

dt2 TrR[H̃eff(t1), H̃eff(t2)ρ̃T (t)]

−
∫ t+δt

t

dt1

∫ t1

t

dt2 TrR[H̃eff(t1), ρ̃T (t2)H̃eff(t)] exp

(
− t1 − t2

τc

)
(2.85)

Doing the procedure shown multiple times before

δρ̃S
δt

(t) = −i[H̃D(t), ρ̃S(t)]sec −
∫ ∞

0

dτ TrR[H̃eff(t), [H̃eff(t− τ), ρ̃T (t)]]sec e
−τ/τc (2.86)

= −i[H̃D(t), ρ̃S(t)]sec −
∫ ∞

0

dτ [H̃D(t), [H̃D(t− τ), ρ̃S(t)]]sec e
−τ/τc

−
∫ ∞

0

dτ TrR[H̃SR(t), [H̃SR(t− τ), ρ̃S(t)⊗ ρ̃eqR ]]sec e
−τ/τc (2.87)

we obtain Fluctuation regulated Quantum Master Equation.

3 Applications using FRQME
Application of the QME is diverse. This report is particularly focused on two level system (TLS).

3.1 Driven dissipative TLS
We consider a scenario of a TLS (take spin-1/2 system) in a constant z-magnetic field with a nearly resonat-

ing oscillatory perturbative drive (x-magnetic field). Here we will reproduce the results in [4] and visualize the
dynamics of the system and concerned observable. The different quantities of the Hamiltonian are as follows

H◦
S = ω0Iz, (3.1)

HD = 2ω1 cos(ωt)Ix with ω ≈ ω0, (3.2)
HSR = ωSR(I+R− + I−R+ + IzRz) (3.3)

Let ω − ω0 = δω and ω + ω0 = Ω, then in interaction picture,

H̃D = eiω0tIz HD e−iω0tIz

=
ω1

2
eiω0tIz

(
eiωt + e−iωt

)(
I+ + I−

)
e−iω0tIz

= ω1(F
C
x (t) + FRx (t)) (3.4)

where

FCx = eiΩtIzIxe
−iΩtIz =

ω1

2
(I+e

iΩt + I−e
−iΩt) (3.5)

FRx = eiδωtIzIxe
−iδωtIz =

ω1

2
(I+e

−iδωt + I−e
iδωt) (3.6)
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Our task is to find the evolution of a state with time. The time scale of our problem is

τc ≪ δt≪ ω−1
1 , ω−1

SR (3.7)

ω−1
0 ≪ δt≪ δω−1 (3.8)

which leads (
e±iωt

)
sec

= 0,
(
e±iω1t

)
sec

= 0,
(
e±iΩt

)
sec

= 0, (3.9)(
e±iδωt

)
sec

= e±iδωt (3.10)

Calculating first order drive term in the FRQME 2.87 using the secular approximation stated before,

ID = −i[H̃D(t), ρ̃S(t)]sec

= −iω1

2

(
e−iδωt [I+, ρ̃S(t)] + eiδωt [I−, ρ̃S(t)]

)
(3.11)

L
(1)
D (t) ||ρ̃S(t)⟩⟩ ≡ −i

ω1

2

(
e−iδωt Î+ + eiδωt Î−

)
||ρ̃S(t)⟩⟩ (3.12)

The equivalent Lindbladian form is also given where Î± = I± ⊗ 1 − 1 ⊗ I∓ (see Appendix A). The second
order drive term is

IID = −
∫ ∞

0

dτ [H̃D(t), [H̃D(t− τ), ρ̃S(t)]]sec e
−τ/τc

= −ω
2
1

4

(
(Γ(Ω) + Γ∗(δω)) [I+, [I−, ρ̃S(t)]] + (Γ∗(Ω) + Γ(δω)) [I−, [I+, ρ̃S(t)]]

+ Γ(δω) e−i2δωt [I+, [I+, ρ̃S(t)]] + Γ∗(δω) ei2δωt [I−, [I−, ρ̃S(t)]]
)

L
(2)
D (t) ||ρ̃S(t)⟩⟩ ≡ −

ω2
1

4

(
(Γ(Ω) + Γ∗(δω)) Î+Î− + (Γ∗(Ω) + Γ(δω)) Î−Î+

+ Γ(δω) e−i2δωt Î+Î+ + Γ∗(δω) ei2δωt Î−Î−

)
||ρ̃S(t)⟩⟩ (3.13)

where

Γ(ν) =

∫ ∞

0

dτeiνte−τ/τc =
τc

1− iντc
= Γ∗(−ν) (3.14)

Now we have to calculate the second order coupling term. The Hamiltonian in interaction picture is

H̃SR = ωSR(e
iω0tI+R̃− + e−iω0tI−R̃+ + IzRz) (3.15)

Following the prescription given in [6], and neglecting the Lamb-shift Hamiltonian we get

IISR = −
∫ ∞

0

dτ TrR[H̃SR(t), [H̃SR(t− τ), ρ̃S(t)⊗ ρ̃eqR ]]sec e
−τ/τc

= −J(ω0)
(1
2
{I−I+, ρ̃eqR } − I+ρ̃

eq
R I−

)
−K(ω0)

(1
2
{I−I+, ρ̃eqR } − I+ρ̃

eq
R I−

)
− j(0)

(1
4
ρ̃eqR − Iz ρ̃

eq
R Iz

)
LSR ||ρ̃S(t)⟩⟩ ≡ −

(J(ω0)

2
(I+I− ⊗ 1+ 1⊗ I+I− − 2I− ⊗ I−)

+
K(ω0)

2
(I−I+ ⊗ 1+ 1⊗ I+I+ − 2I+ ⊗ I+)

+
j(0)

4
(1⊗ 1− 4Iz ⊗ Iz)

)
||ρ̃S(t)⟩⟩ (3.16)
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where J(ω0),K(ω0) and j(0) are some constants. Combining all the quantities, our FRQME for the problem
is

δ

δt
||ρ̃S(t)⟩⟩ = (L

(1)
D (t) + L

(2)
D (t) + LSR) ||ρ̃S(t)⟩⟩ (3.17)

Taking different initial states and solving FRQME numerically by 4th order Runge-Kutta (RK4) we visualize
the trajectory of the state in Bloch sphere in figure 3.
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Figure 3: Figure shows the trajectory for different initial states ρ̃S(0) = |ψ(0)⟩⟨ψ(0)|. The values of different
parameters are ω0 = 200π MHz, ω1 = 20π KHz, T1 = 10 ms, T2 = 0.2 ms, τc = 0.1 µs. For figure 3a, 3b
and 3c the δω = 0, but for figure 3d, 3e and 3f the δω = 10π KHz.

Now we are interested in looking the observable Ix, Iy and Iz (magnetic moments). As mentioned in
[4], heterodyne detection followed by low-pass filter is equivalent to measuring in co-rotating frame with ω
frequency. So the observables Iα we want to measure in co-rotating frame are as follows,

Mα(t) = ⟨e−iωtIzIαeiωtIz ⟩ = Tr
(
e−iωtIzIαe

iωtIz ρ̃S(t)
)
= Tr

(
FRα (t)ρ̃S(t)

)
(3.18)

Now

d

dt
Mα(t) = Tr

(
ρ̃S(t)

d

dt
FRα (t)

)
+Tr

(
FRα (t)

δ

δt
ρ̃S(t)

)
(3.19)

Following [6] we get the differential equations,

d

dt

Mx

My

Mz

 =

 −ηx − 1/T2 δω − δωC 0
δωC − δωR − δω −ηy − 1/T2 −ω1

0 ω1 −ηz − 1/T1

Mx

My

Mz

+
1

T1

 0
0
M0

 (3.20)
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where

δωC =
1

2

( ω2
1Ωτ

2
c

1 + Ω2τ2c

)
, δωR =

ω2
1δωτ

2
c

1 + δω2τ2c
, ηx =

1

2

( ω2
1τc

1 + Ω2τ2c

)
,

ηy =
1

2

( ω2
1τc

1 + Ω2τ2c

)
+

ω2
1τc

1 + δω2τ2c
, ηZ =

ω2
1τc

1 + Ω2τ2c
+

ω2
1τc

1 + δω2τ2c
,

1

T1
= J(ω0) +K(ω0),

1

T1
=

1

2
(J(ω0) +K(ω0) + j(0)), (3.21)

the constants T1, T2 are the relaxation times and M0 is equilibrium magnetic moment.
Taking different initial magnetic moments and solving the above coupled differential equation by RK4, we

plot the variation of observables in the figure 4. Note that the value of M0 is taken as zero as after very long
time, our final state will approach to maximally mixed state i.e., ρ̃S(t→∞) = 1

21 due to decoherence.
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Figure 4: Variation of observable Mx, My and Mz with time for different initial magnetic moments M⃗(0) =
(Mx(0),My(0),Mz(0)). The values of different parameters are ω0 = 200π MHz, ω1 = 20π KHz, δω =
10π KHz, T1 = 50 ms, T2 = 1 ms, τc = 0.1 µs, M0 = 0.

3.2 Maximum fidelity drive strength
Fidelity is a measure of the ‘distance’ between two operator in a Liouville space. Let σ and ρ be two

operator in Liouville space then the fidelity in between them is defined as

F (σ, ρ) =
(
Tr
√√

ρσ
√
ρ
)2

(3.22)

In this section we want to find the optimum drive strength ω1 for which we can achieve the maximum
fidelity between the the final state and desired target state. We start from the state |z,+⟩ and drive the system
by ∼ π/2 pulse (not exactly π/2, but slightly more than that) of varying strength ω1 and find the maximum
fidelity between the final state evolved by the FRQME and target state |z,−⟩ for each strength ω1 and plot it in
the figure 5.We see that initially in lower frequency the fidelity is rising as the first order drive term is dominant
over the other two but, in higher frequency the second order drive term and the coupling term dominate which
leads to the net decrease in fidelity. In between this, we achieve the optimal strength. We also see that with
increase the correlation time τc the plot decays faster as the extent of environment fluctuation effect increases.
Another observation is that the plot is not significantly changing with the change of ω0. These are the notable
observations.
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Figure 5: Figures show the variation of fidelity with strength ω1. For the figure 5a, we do not consider coupling
Hamiltonian of FRQME during calculation but in 5b we have the full FRQME. Optimal strength ω1 is shown by
the vertical line in both plot. Figure 5c and 5d show the variation of plot for two different τc and two different
ω0, respectively. Primary values of the parameters are ω0 = 200πMHz, ω1 = 20πKHz, δω = 10πKHz, T1 =
10 ms, T2 = 0.2 ms, τc = 0.01 µs.

3.3 Quantum optimal control of spin-1/2 system
In the previous section, we discussed how controlling the drive strength can achieve high fidelity. However,

in that scenario, the number of control parameters is very limited, as we can only adjust the drive strength and
not its direction. In this section we desire to get maximum fidelity within a fixed time window. To attain higher
fidelity, we will vary the direction of the drive throughout its evolution in the given time window in a optimal
way. Here, we will discuss how we can achieve this by following the Gradient Ascent Pulse Engineering (or
GRAPE) algorithm. For the GRAPE algorithm, we follow the method outlined in [7] and [8], and apply that
to our driven dissipative system of spin-1/2. In this case our drive Hamiltonian is parameterized by two control
parameter ωx and ωy , as follows

HD(t|ωx, ωy) = 2ωx cos(ωt)Ix + 2ωy cos(ωt)Iy (3.23)

which allow us to change the direction of the drive. In interaction picture,

H̃D(t) = ωx(F
C
x (t) + FRx (t)) + ωy(F

C
y (t) + FRy (t))

=
1

2

(
ω∗
d e

iΩt I+ + ωd e
−iΩt I− + ω∗

d e
iδωt I+ + ωd e

iδωt I−

)
(3.24)
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where ωd = ωx + i ωy . Using this, the first and second order drive term of the FRQME in Lindbladian form
are,

L
(1)
D (t) = − i

2

(
ω∗
d e

−iδωt Î+ + ωd e
iδωt Î−

)
(3.25)

L
(2)
D (t) = −1

4

(
|ωd|2 (Γ(Ω) + Γ∗(δω)) Î+Î− + |ωd|2 (Γ∗(Ω) + Γ(δω)) Î−Î+

+ ω∗
d
2 Γ(δω) e−i2δωt Î+Î+ + ω2

d Γ
∗(δω) ei2δωt Î−Î−

)
(3.26)

and the coupled term LSR is same as before. Let us define LD(t) = L
(1)
D (t)+L

(2)
D (t) which is controled by the

control parameter ωx and ωy . To get the maximum fidelity we will vary the ωx and ωy throughout its evolution
as stated before. Then the FRQME and its solution is given by

δ

δt
||ρ̃S(t)⟩⟩ = (LD(t|ωd(t)) + LSR) ||ρ̃S(t)⟩⟩ (3.27)

||ρ̃S(t)⟩⟩ = T exp

(∫ t

0

dt1 (LD(t1|ωd(t1)) + LSR)

)
||ρ̃S(0)⟩⟩ (3.28)

Although we will not vary ωd(t) continuously as it is not feasible for numerical calculation or experimental
purpose. We divide the time window (say from 0 to T ) in N equal sub-window of length T/N , and will keep
the value of ωd(t) constant in each sub-window. Let ωd(n) be the complex drive frequency which is constant
in the nth subwindow, i.e. from (n− 1)T/N to nT/N . Then the solution of the FRQME is modified to

||ρ̃S(t)⟩⟩ = T exp

(
N∑
n=1

∫ nT/N

(n−1)T/N

dt1 (LD(t1|ωd(n)) + LSR)

)
||ρ̃S(0)⟩⟩ (3.29)

Our task is to optimize the set of parameters {ωd(n)}, such that fidelity F (ρ̃S(0), σ) is maximum, where σ is
the target state.

The optimization of {ωd(n)} by GRAPE algorithm is in a loop as follows:

Guess the initial {ωd(n)}

Is the infidelity (1− F (ρ̃S(0), σ))
within the given tolerance ?

Update the parameter :
ωx(n) −→ ωx(n) + ϵ ∂F

∂ωx(n)

ωy(n) −→ ωy(n) + ϵ ∂F
∂ωy(n)

(ϵ is step size)

Exit

NO

YES

The key step of the GRAPE algorithm is the updating the parameter and calculating the gradient of fidelity
{ ∂F
∂ωx(n)

, ∂F
∂ωy(n)

}. The numerical implementation of this algorithm for our problem has not been completed
due to time constraint.

4 Conclusions
I have presented a brief overview of dynamics of open quantum systems, the Quantum Master Equation,

the Fluctuation Regulated Quantum Master Equation and showed the dynamics of the driven dissipative TLS
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through numerical simulation of FRQME and infer from the simulation plots. We gave a brief introduction
to the quantum optimal control over the specified system. I hope this report serves as a foundation for further
studies in understanding the complex dynamics of open quantum systems.
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Appendices
A Liouvillean formalism

Here we will very briefly discuss about Liouville space, density matrix in Liouville space and some prop-
erties required for the report. For detailed explanation, readers are requested to refer to [5]. As we know that a
pure state can be represented as a element (’ket’ state) of a Hilbert space (H). But a mixed state being ’weighted
average’ of multiple ket states, cannot be represented as an single element of Hilbert space. Here comes the
Liouville space. A Liouville space (L) is a inner product space in which all the operators of a Hilbert space
(H) reside. So for any |ψ⟩ , |ϕ⟩ ∈ H, the operator

O =
∑
ϕ,ψ

|ϕ⟩⟨ψ| ∈ L. (A.1)
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Sometimes the elements of Liouville space be represented in a column vector form

||O⟩⟩ =
∑
ϕ,ψ

|ϕ⟩ ⊗ |ψ⟩∗ (A.2)

For a 1-qubit state, it is

ρ =

(
ρ11 ρ12
ρ21 ρ22

)
←→ ||ρ⟩⟩ =


ρ11
ρ12
ρ21
ρ22

 (A.3)

Now the following identity we will discuss, is very important and frequently utilized. For operators A,B,C ∈
L, the column vector form of ABC ∈ L i.e., ||ABC⟩⟩ is written as

||ABC⟩⟩ = (A⊗ CT ) ||B⟩⟩ . (A.4)

Using this identity, we can write the Von-Neumann equation for ||ρ⟩⟩,

ρ̇(t) = −i[H(t), ρ(t)] (A.5)
˙||ρ⟩⟩(t) = −i ||[H(t), ρ(t)]⟩⟩

= −i ||
(
H(t)ρ(t)− ρ(t)H(t)

)
⟩⟩

= −i
(
||H(t)ρ(t)1⟩⟩ − ||1ρ(t)H(t)⟩⟩

)
= −i

(
H(t)⊗ 1− 1⊗HT (t)

)
||ρ(t)⟩⟩ . (A.6)

So we can write any commutator of the form

||[H(t), ρ(t)]⟩⟩ = Ĥ(t) ||ρ(t)⟩⟩ (A.7)

where Ĥ(t) is called the superoperator (in this context its Lindbladian) with

Ĥ(t) = H(t)⊗ 1− 1⊗HT (t). (A.8)

Now we look for the solution of the following equation

˙||ρ⟩⟩(t) = Ĥ(t) ||ρ(t)⟩⟩ (A.9)

which is

||ρ(t)⟩⟩ = T exp

(∫ t

0

ds Ĥ(s)

)
||ρ(0)⟩⟩ (A.10)

B Time ordering operator
Often we encounter the unitary propagator of a system with Hamiltonian H , in the form of

U(T, T0) = T exp

(
−i
∫ Tf

Ti

dt1H(t1)

)
(B.1)
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where T is a time ordering operator. A time ordering operator operates on Hamiltonian as follows:

T (H(tπ1)H(tπ2) . . . H(tπn)) = H(t1)H(t2) . . . H(tn) (B.2)

where π is any permutation of {1, 2, . . . , n} and t1 > t2 > · · · > tn. For example, if t1 > t2,

T (H(t1)H(t2)) = T (H(t2)H(t1)) = H(t1)H(t2) (B.3)

As {1, 2, . . . , n} can be permuted in n! different ways, there are n! ways one can get the same result. We do
not consider the cases when any two times become equal i.e., ti = tj , as they form measure-zero set. Now to
justify the expression of unitary propagator, take two cases:

Case 1: H(t) does not commutes each other for different t.
Then

U(Tf , Ti) = T exp

(
−i
∫ Tf

Ti

dt1H(t1)

)

= 1+

∞∑
n=1

(−i)n

n!
T

(∫ Ti

Tf

dt1 · · ·
∫ Ti

Tf

dtnH(t1) . . . H(tn)

)
(B.4)

And by the fact that there are n! different set of values of {t1, . . . , tn} for which we get the same result of
T (H(t1) . . . H(tn)), one can show that

T

(∫ Ti

Tf

dt1 · · ·
∫ Ti

Tf

dtnH(t1) . . . H(tn)

)
= n!

∫ Ti

Tf

dt1

∫ t1

Tf

dt2 · · ·
∫ tn−1

Tf

dtnH(t1) . . . H(tn) (B.5)

using the result,

U(Tf , Ti) = 1+

∞∑
n=1

(−i)n
∫ Ti

Tf

dt1

∫ t1

Tf

dt2 · · ·
∫ tn−1

Tf

dtnH(t1) . . . H(tn) (B.6)

we recover the Dyson series.

Case 2: H(t) commutes each other for different t.
This means H(tπ1

)H(tπ2
) . . . H(tπn

) = H(t1)H(t2) . . . H(tn). For any {t1, . . . , tn}, we have

T (H(t1)H(t2) . . . H(tn)) = H(t1)H(t2) . . . H(tn) (B.7)

this follows

U(Tf , Ti) = T exp

(
−i
∫ Tf

Ti

dt1H(t1)

)

= 1+

∞∑
n=1

(−i)n

n!

∫ Ti

Tf

dt1H(t1) · · ·
∫ Ti

Tf

dtnH(tn)

= 1+

∞∑
n=1

(−i)n

n!

(∫ Ti

Tf

dt1H(t1)

)n
= exp

(
−i
∫ Tf

Ti

dt1H(t1)

)
(B.8)
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C Kubo cumulant expansion
Kubo cumulant expansion is a very useful mathematical tool when we work with Hamiltonian having a

stochastic part. Consider as an example our Hamiltonian described in the hilbert spaceH be

H = H◦(t) +Hst(t) (C.1)

where H◦, Hst be the non-stochastic and stochastic part of the Hamiltonian. The propagator in this case is

U(t) = T exp

(
−i
∫ t

0

dt1H(t1)

)
. (C.2)

Starting with a state |ψ(0)⟩ ∈ H, in a later time the state will be

|ψ(t)⟩ = U(t) |ψ(0)⟩ (C.3)

Due to the presence of stochastic term in Hamiltonian, the final state will have a probability distribution in
Hilbert space (there is no certainty that the initial state will reach to a particular final state with unit probability).
But we are interested in the ’statistical ensemble average’ of the final states. To get the ensemble average of
final state i.e., |ψ(t)⟩, we have to take the ensemble average of the propagator such that,

|ψ(t)⟩ = U(t) |ψ(0)⟩ (C.4)

Let,

U(t) = T exp

(
−i
∫ t

0

dt1H(t1)

)
= ek(t) (C.5)

Now look at the RHS of the above expression. We first do Taylor series expansion of the function k(t) around
t = 0, then we put that into the expression in RHS.

k(t) =
∑
n=1

(−i)n

n!
knt

n, k0 = 0 as U(0) = 1 (C.6)

ek(t) = 1+
∑
m=1

km(t)

m!

= 1+
∑
m=1

1

m!

(∑
n=1

(−i)n

n!
knt

n
)n

= 1− ik1t−
1

2
(k2 − k21)t2 +O(t3) (C.7)

Now from the expression (B.4), we get

U(t) = 1+

∞∑
n=1

(−i)n

n!
T

(∫ t

0

dt1 · · ·
∫ t

0

dtnH(t1) . . . H(tn)

)
(C.8)

and comparing above two expressions, we get,

k1 =
1

t

∫ t

0

dt1 H(t1) (C.9)

k2 =
1

t2
T

(∫ t

0

∫ t

0

dt1dt2 H(t1)H(t2)

)
− k21. (C.10)
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and so on. Now writing the ensemble-averaged propagator

U(t) = T exp

(
−i
∫ t

0

dt1H(t1)

)
= ek(t)

≈ exp

{
−i
∫ t

0

dt1H(t1)−
1

2
T
(∫ t

0

∫ t

0

dt1dt2H(t1)H(t2)
)
+
(∫ t

0

dt1 H(t1)
)2}

(C.11)

This is Kubo cumulant expansion. The advantage of this expansion is that we need to know the average value
and the autocorrelation function of the Hamiltonian.

The integration we will encounter in this report is of the form

exp

(
±i
∫ t1

t2

dt3fj(t3)

)
with t1 ≥ t2 and

{
fj(t) = 0

fj(s)fj(t) = κ2 δ(s− t)
(C.12)

then using (C.11),

exp

(
±i
∫ t1

t2

dt3 fj(t3)

)
≈ exp

{
−1

2

∫ t1

t2

∫ t1

t2

dt3dt4 fj(t3)fj(t4)

}
= exp

{
−κ

2

2

∫ t1

t2

∫ t1

t2

dt3dt4 δ(t3 − t4)
}

= exp

{
−κ

2

2
(t1 − t2)

}
(C.13)
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